
OPC DCOM White Paper
Richard C. Harrison, Intellution Inc.

© Intellution Inc. 1998
ALL RIGHTS RESERVED

Abstract
For OPC implementations in general, it is expected that OPC Server vendors will take

one of two approaches to networking:
• The client may connect to a local server which makes use of an existing proprietary

network scheme. This approach will commonly be used by vendors who are
adding OPC capability to an existing distributed product.

• The client may connect to the desired server on a target machine and make use of
DCOM for networking. This approach may be used in conjunction with the above
approach.

The use of DCOM for remote OPC Client/Server communications is the most common

and obviously the approach required for cross-vendor interoperability. Consequently,
there are several issues which surface in the design, development, implementation and
deployment of distributed (DCOM-enabled) OPC components. This white paper will
outline some of these issues that have been encountered with DCOM and OPC
implementations by members of the OPC Foundation and will offer possible solutions
and/or references for resolution.

Security
COM/DCOM security is by far the most misunderstood and therefore problematic

issue for DCOM-enabled OPC component vendors. As DCOM uses the extensible
security framework provided by Windows NT, it is essential that any discussion of
DCOM security begin with an overview of this framework. The following is an excerpt
from the "DCOM Technical Overview" White Paper:

DCOM can make distributed applications secure without any security-specific coding or design in either
the client or the component. Just as the DCOM programming model hides a component's location, it also
hides the security requirements of a component. The same (existing or off-the-shelf) binary code that works
in a single-machine environment, where security may be of no concern, can be used in a distributed
environment in a secure fashion.
DCOM achieves this security transparency by letting developers and administrators configure the security
settings for each component. Just as the Windows NT File System lets administrators set access control
lists (ACLs) for files and directories, DCOM stores Access Control Lists for components. These lists
simply indicate which users or groups of users have the right to access a component of a certain class.
These lists can easily be configured using the DCOM configuration tool (DCOMCNFG) or
programmatically using the Windows NT registry and Win32® security functions.
Whenever a client calls a method or creates an instance of a component, DCOM obtains the client's current
username associated with the current process (actually the current thread of execution). Windows NT
guarantees that this user credential is authentic. DCOM then passes the username to the machine or process
where the component is running. DCOM on the component's machine then validates the username again
using whatever authentication mechanism is configured and checks the access control list for the
component (actually for the first component run in the process containing the component. For details, see

the "DCOM Architecture" White Paper.) If the client's username is not included in this list (either directly
or indirectly as a member of a group of users), DCOM simply rejects the call before the component is ever
involved. This default security mechanism is completely transparent to both the client and the component
and is highly optimized. It is based on the Windows NT security framework, which is probably one of the
most heavily used (and optimized!) parts of the Windows NT operating system: on each and every access
to a file or even to a thread-synchronization primitive like an event or semaphore, Windows NT performs
an identical access check. The fact that Windows NT can still compete with and beat the performance of
competing operating systems and network operating systems shows how efficient this security mechanism
is.

(Extended) Directory:
 BillG/Password,
 SteveB/Password
 MyAppUserGroup =
 SteveB, Administrators

Client A
User: BillG

Component

Access Control List
for Component:
 BillG
 MyAppUserGroup

Client B
User: SteveB

Client B
User:

DCOM

Security Provider

2. Authenticate User

3. Is User in
the list?

4. Fail or allow call

DCOM

DCOM

DCOM

1. DCOM obtains
user name

JohnSmith

Figure 1 - Security by Configuration

There are three main issues; authentication, launch (activation) permission and access
(call) permissions which all operate more or less independently of each other.

The first thing Windows NT does is to authenticate the user (as in the figure above).

Whether or not this is done depends on the authentication level defined in DCOMCNFG.
This level is specified by both the client and server machines: the server specifies the
minimum required authentication level for incoming calls (any call that comes in below
this is automatically rejected via E_ACCESSDENIED), and the client specifies it’s
required authentication level for each interface call. COM automatically uses the higher
of the two settings. More information on these settings can be found in the HELP file for
DCOMCNFG.

Once the user has been authenticated, two additional types of security are defined in

DCOM: activation security (permissions) and call security (permissions).
Activation security controls which classes a client is allowed to launch and retrieve

objects from, and is automatically applied by the Service Control Manager of a particular
machine. Upon receipt of a request from a remote client to activate an object, the Service

 2

Control Manager of the machine checks the request against activation setting information
stored within it’s registry. The HKEY_LOCAL_MACHINE\Software\Microsoft\OLE
key’s DefaultLaunchPermission named value sets the machine-wide default access
control list (ACL) to specify who has access to classes on the system. For class-specific
activation settings (which take precedence over the default setting), the
HKEY_CLASSES_ROOT\APPID\{…} key’s LaunchPermission named value contains
data describing the class’s ACL. These keys are set initially when NT is installed and can
be modified by DCOMCNFG.

Call security provides the security mechanism on a per-call basis that validates inter-
object communication after a connection between a client and server has been
established. Call security services are divided into three categories: general functions
called by both clients and servers, new interfaces on client proxies, and server-side
functions and call-context interfaces. The
HKEY_LOCAL_MACHINE\Software\Microsoft\OLE key’s DefaultAccessPermission
named value sets the machine-wide default access control list (ACL) to specify who has
access to classes on the system. For class-specific activation settings (which take
precedence over the default setting), the HKEY_CLASSES_ROOT\APPID\{…} key’s
AccessPermission named value contains data describing the class’ ACL. These keys are
set initially when NT is installed and can be modified by DCOMCNFG.

So again, these two sets of settings control who can Launch a COM object and also

who can call methods on the object once it is launched. (In most cases you will make
them the same).

See the following reference for more information on the above:
• INFO: COM Security Frequently Asked Questions – provides tips and techniques, as well as

troubleshooting information, for developers of secure COM components.
http://support.microsoft.com/support/kb/articles/q158/5/08.asp

Configuration
DCOM security settings may be manipulated by the DCOMCNFG utility

(\WINNT\System32\dcomcnfg.exe). This utility allows the configuration of the various
registry keys for both machine-wide and class-specific security settings.

Question: How do I disable DCOM security between two machines?
Background: It is often necessary to simply disable DCOM security between two

machines for demo purposes or interoperability reasons.
Resolution: Use DCOMCNFG as follows:

OPC Client machine:
• Set the Default Authentication Level to (None) on the Default

Properties tab.
OPC Server machine:
• Set the Default Authentication Level to (None) on the Default

Properties tab.
• Add “Everyone” to both the Default Access Permissions and

Default Launch Permissions Access Control Lists on the

 3

http://support.microsoft.com/support/kb/articles/q158/5/08.asp

Default Security tab.
With these settings, the domain setup (if any) as well as the IDs of
the login users of each machine will be of no importance.

NOTE: if the programs involved are calling CoInitializeSecurity
explicitly then there is no way to override the settings that they
may have hard coded and so this procedure may not work.

Question: What is the difference in DCOM security configuration between

machines located in a Workgroup (standalone) and domain
environments?

Background: Certain DCOM security configurations which are suitable for OPC
client/server operation on a domain (e.g. vendor development
environment), may not be suitable for Workgroup or standalone
(e.g. customer installations) operation.

Resolution: The issue here is authentication. In a domain environment, the
domain controller (primary and/or backup) holds domain accounts
that are valid on all machines that are part of the domain (as
opposed to local accounts, which are valid only on the local
machine). Therefore, the domain resident machine receives
authentication from the domain, while the standalone machine
receives authentication from it’s own Security Accounts Manager
(SAM). So, if authentication between the client and server is
enabled, a caller’s credentials must be able to be authenticated by
either the domain or the local machine. For example, if a domain
“OPC” is set up to run OPC components, and the machines used
are logged in this domain, the desired users from the domain must
be added to the components’ Access Permissions and/or Launch
Permission lists.

The CoInitializeSecurity() function registers security and sets the default security

values for the process. For legacy applications, COM automatically calls this function
with values from the registry as mentioned above. It is invoked once per process, rather
than for each thread in the process. If you set registry values and then call
CoInitializeSecurity(), the AppID and default registry values will be ignored, and the
CoInitializeSecurity values will be used.

Question: What are the correct parameters for a CoInitializeSecurity()

function?
Background: CoInitializeSecurity() may be called to programmatically set

security values for a process. This function is commonly used to
set the default authentication level for proxies on the process, and
is the preferred method of doing so over using DCOMCNFG to set
the default authentication level machine-wide. It can also set the

 4

Access ACL for the process in case the server wants total control
over it's own user list. This cannot be used to set launch
permissions (this would not be useful since the call can only be
made from a server which is already running).

Resolution: The following will set the default authentication level for proxies
of a process to None. This would be appropriate in a low security
environment. Refer to Microsoft Help for this function for
additional information.
CoInitializeSecurity(NULL, -1, NULL, NULL,
RPC_C_AUTHN_LEVEL_NONE,
RPC_C_IMP_LEVEL_IDENTIFY, NULL, EOAC_NONE,
NULL);

Question: What about callbacks from the server to the client such as
OnDataChange?

Background: In some cases the server will make calls back to the client. These
calls are also subject to NT security. Essentially the client and
server roles are reversed in this case. However in this case, only
authentication is an issue, launch and access permissions are not an
issue as they only apply to objects.

Resolution: In most cases (even in systems used in secure environments), the
client should call CoInitializeSecurity as noted above thereby
setting the authentication level of the client process to NONE. This
allows the server to call back into the client. Note that only the
server to which the client is connected can take advantage of this
'opening'.

Question: Can you suggest any general guidelines for setting up a secure

environment?
Background: Many process control applications require a secure environment.
Resolution: This depends a great deal on the needs of the particular

organization. Also there is an OPC Working group actively
investigating these issues. Here are some general guidelines:

• DO use a domain.
• Set the authentication level to connect (or higher) on the server

machines.
• Create a Group (in the domain) which will be allowed to launch

and access the OPC objects.
• Use DCOMCNFG to include this group in the ACLs for launch

and access permissions for each OPC object.
• Insure your operators are members of this group.

This should allow different users to be logged onto various client
machines. It should also allow callbacks to function as the server
machine can be authenticated by the client machine.

 5

Timeouts
Question: How can a client tell if the server is still running? And is it possible

to configure the timeout interval for an OPC Client-Server method
call?

Background: Client calls to a failed server will timeout depending on the timeout
provided by the transport. For example, UDP will timeout in
approximately 32 seconds, with others taking up to two minutes.

Resolution: This is a result of the transport protocol performing necessary
retries, error handling, etc. Microsoft has indicated that there is no
formal way of configuring this, as the required “hooks” are not
present in NT 4.0 (NT 5.0 will resolve this with timeouts on the
order of a few seconds). One possible workaround would be for
the client implementation to set a separate timer with an
appropriate timeout interval upon each method call. If the timer
fires before the method call returnes, an appropriate action may be
taken, such as setting affected item qualities to uncertain.
Note: Microsoft does not recommend modifying the default
IMessageFilter implementation, as has been suggested by some
sources. See also 'Error handling' below.

Question: How can my server tell if a Client is still running and does that

relate to this 6 minute timeout I keep hearing about?
Background: DCOM needs to be able to handle any combination of server, client

or network crash. DCOM maintains a background 'ping' between a
client and server to help with this. If a client connection is lost (e.g.
the client crashed), NT will detect this within 6 minutes. At that
point all of the interfaces the client had requested from the Server
will be Released. This is intended to simulate a client shutting
down normally.

Resolution: Because of this, servers writers do not need to worry about client
crashes. NT will essentially 'pretend' that the client shut down
normally and released all interfaces.

Browsing for Remote Servers
Currently, most OPC client vendors have implemented browsing for remote OPC

Servers by using the Registry API’s that support access to a remote machine’s registry.
This method is not only a security problem, but also not recommended by Microsoft
(COM server information may not be contained in the Registry in the future). An effort
by the OPC Foundation is underway to resolve this issue with recommendations from
Microsoft. These efforts include the use of Component Categories and/or a custom COM
server which enumerates OPC Servers on the machine in which it resides and makes

 6

these available to remote OPC clients. More to come on this…

Error Handling
When OPC Client-Server calls are remoted, all of the RPC_E_* error codes must be

considered possible returns from method calls. The following may be done to indicate
the need for a client to completely reconnect to a server:

// Check if the facility code of the returned HRESULT is of type RPC
if (FACILITY_RPC == HRESULT_FACILITY(hr))
{
 if (RPC_E_DISCONNECTED == hr)
 {
 // Need to reconnect (i.e. Call CoCreateInstance)
 }
}

Question: What is the proper way for a client to determine that a server has

failed and what should it do when this does happen?
Background: The failure can occur at any time (i.e. during any method). If such

a failure does occur the client will need to reconnect to the server.
Resolution: For each interface method call, it’s return value should be checked

for error as indicated above.
Note that Release() does not have to be called on all interface
pointers in this case, as (a) the connection has been lost and such
calls will not go through and (b) the server object will be garbage
collected eventually (six minutes) as mentioned earlier.
Note, do not use QueryInterface() as a 'ping' mechanism because a
QueryInterface() for the same IID is cached and never goes remote,
and proxies are not automatically updated of server status. Instead
use a call such as IOPCServer->GetStatus().

Miscellaneous
Sources of information for DCOM development:
• Microsoft Mailing Lists (DCOM, ATL, etc.): http://microsoft.ease.lsoft.com/
• Microsoft Support Online (Knowledge Base):

http://premium.microsoft.com/support/
• Michael Nelson’s code: http://www.wam.umd.edu/~mikenel/
• Don Box’s code: http://www.develop.com/dbox

References
Box, Don. Essential COM
 Addison Wesley Longman, Inc., 1998

Grimes, Dr. Richard. Professional DCOM Programming

 7

http://microsoft.ease.lsoft.com/
http://premium.microsoft.com/support/
http://www.wam.umd.edu/~mikenel/
http://www.develop.com/dbox

 8

 Wrox Press Ltd., 1997

“DCOM Technical Overview” White Paper

Microsoft Corporation, 1996

Revision History
Draft 1 - Monday, March 9, 1998
Revision 2 – Thursday, April 9, 1998

	Abstract
	Security
	Configuration
	Timeouts
	Browsing for Remote Servers
	Error Handling
	Miscellaneous
	References
	Revision History

